Контрольные, курсовые, рефераты, тесты – готовые и на заказ!
 Гарантия качества, доступные цены, индивидуальный подход
 Работы выполняют высококвалифицированные специалисты
Войти      Регистрация
 тел. 8-912-388-82-05
  std72@mail.ru
> 20 лет успешной работы
> 50000 выполненных заказов
Отзывы/вопросы

Форма входа



Главная » Учебно-методические материалы » ЭКОНОМЕТРИКА » Ответы на экзаменационные билеты по эконометрике. Яковлева А.В.

Критерий Дикки-Фуллера проверки наличия единичных корней
18.12.2011, 01:54

Проверкой наличия единичных корней называется задача проверки основной гипотезы вида

H0:ρ=0 в модели авторегрессии первого порядка:

yt=a+ρyt–1+εt.

Для данного ряда справедливы следующие предположения:

1) временной ряд yt является стационарным, если выполняется условие – 1‹ρ‹1;

2) временной ряд yt является нестационарным и представляет собой модель со случайным трендом, если выполняется условие ρ=1;

3) временной ряд yt также является нестационарным, если выполняется условие ρ›0.

Таким образом, гипотеза о стационарности временного ряда yt состоит в проверке основной гипотезы вида H0:ρ=1.

Критерий Дикки-Фуллера используется при проверке гипотезы о наличия единичных корней.

При этом выдвигается основная гипотеза вида H0:ρ=1 для модели авторегрессии первого порядка:

yt=a+ρyt–1+εt.

Однако на следующем этапе оценивается не эта модель авторегрессии, а модель, которая получается после перехода к первым разностям:

Δyt=δyt-1+εt,

где δ=ρ–1.

Проверка основной гипотезы вида H0:ρ=1 для исходной модели авторегрессии первого порядка аналогична проверке гипотезы H0:δ=0 для полученной модели. Проверка данной гипотезы может осуществляться для трёх типов регрессионных уравнений:

Δyt=δyt-1+εt;(1)

Δyt=а+δyt-1+εt; (2)

Δyt=а+δyt-1+βt+εt. (3)

Данные модели регрессии отличаются только наличием членов модели a и βt.

Первая модель является моделью случайного тренда, во вторую модель включается свободный член a, являющийся коэффициентом случайного тренда. В третью модель включены и коэффициент случайного тренда, и коэффициент линейного временного тренда βt.

Проверка основной гипотезы H0:δ=0 состоит в оценивании методом наименьших квадратов одной или нескольких из моделей регрессии 1, 2, 3 для получения оценки  и её стандартной ошибки.

Наблюдаемое значение t-критерия для проверки основной гипотезы вида H0:δ=0  состоит в оценивании методом наименьших квадратов одной или нескольких из моделей регрессии 1, 2, 3 для получения оценки

и её стандартной ошибки.

Наблюдаемое значение t-критерия для проверки основной гипотезы вида H0:β=0 рассчитывают по формуле:

где

– стандартная ошибка оценки

Однако критическое значение t-критерия в данном случае нельзя определить по таблице распределения Стьюдента. Дикки и Фуллер провели исследования, в результате которых определили критические значения t-критерия для проверки гипотезы H0:δ=0 в зависимости от вида модели регрессии и объёма выборочной совокупности. Данные статистики обозначаются как τ – для первой модели регрессии, τμ – для второй модели регрессии, τх – для третьей модели регрессии. Они приведены в таблице критических значений статистик Дикки-Фуллера для различных уровней значимости.

При проверке гипотезы о наличии во временном ряду авторегрессии более чем первого порядка используется расширенный критерий Дикки-Фуллера (Augmented Dickey-Fuller Test – ADF).

Процесс авторегрессии порядка р можно записать следующим образом:

Основная гипотеза формулируется как H0:δ=0. Если данная гипотеза верна, то данная модель авторегрессии имеет единичный корень, т. е. подчиняется процессу авторегрессии первого порядка.

Проверка основной гипотезы H0:δ=0 осуществляется для различных типов регрессионных уравнений:

Справедливость основной гипотезы проверяется с помощью статистики τ для первой модели регрессии (при отсутствии свободного члена и временного тренда).

Справедливость основной гипотезы проверяется с помощью статистики τμ для второй модели регрессии, включающей свободный член.

Справедливость основной гипотезы проверяется с помощью статистики τх для третьей модели регрессии, включающей свободный член и временной линейный тренд.

Если сумма коэффициентов модели регрессии вида

равна единице, т. е.

 т. е. в данной модели имеется единичный корень.

http://lib.rus.ec




БАНКОВСКОЕ ДЕЛО
БУХГАЛТЕРСКИЙ, УПР. И ФИН. УЧЕТ
БЮДЖЕТ И БЮДЖЕТНАЯ СИСТЕМА РФ
ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ
ГУМАНИТАРНЫЕ НАУКИ
ДОКУМЕНТОВЕДЕНИЕ И ДЕЛОПРОИЗВОДСТВО
ИНВЕСТИЦИИ
ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЭКОНОМИКЕ
ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ
МАРКЕТИНГ
МЕНЕДЖМЕНТ
МЕТ. РЕКОМЕНДАЦИИ, ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
МИРОВАЯ ЭКОНОМИКА И МЭО
НАЛОГИ И НАЛОГООБЛОЖЕНИЕ
ПЛАНИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ
ПРАВОВЕДЕНИЕ
РАЗРАБОТКА УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
РЫНОК ЦЕННЫХ БУМАГ
СТАТИСТИКА
УПРАВЛЕНИЕ ПЕРСОНАЛОМ
УЧЕБНИКИ, ЛЕКЦИИ, ШПАРГАЛКИ (СКАЧАТЬ)
ФИНАНСОВЫЙ МЕНЕДЖМЕНТ
ФИНАНСЫ, ДЕНЕЖНОЕ ОБРАЩЕНИЕ И КРЕДИТ
ЦЕНЫ И ЦЕНООБРАЗОВАНИЕ
ЭКОНОМИКА
ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ
ЭКОНОМИКА И СОЦИОЛОГИЯ ТРУДА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ (МИКРО-, МАКРО)
ЭКОНОМИЧЕСКИЙ АНАЛИЗ
ЭКОНОМЕТРИКА
Оформить заказ
Ваше имя *
Ваш e-mail *
Контактный телефон
Город *
Учебное заведение *
Предмет *
Тип работы *
Тема работы/вариант *
Кол-во страниц
Срок выполнения *
Прикрепить файл
Дополнительные условия


Статистика
Онлайн всего: 32
Гостей: 32
Пользователей: 0