Контрольные, курсовые, рефераты, тесты – готовые и на заказ!
 Гарантия качества, доступные цены, индивидуальный подход
 Работы выполняют высококвалифицированные специалисты
Войти      Регистрация
 тел. 8-912-388-82-05
  std72@mail.ru
> 20 лет успешной работы
> 50000 выполненных заказов
Отзывы/вопросы

Форма входа



Главная » Учебно-методические материалы » ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ » Экономика и управление предприятием: конспект лекций. Непомнящий Е.Г.

Тема 7. Производственный процесс и типы производств (2)
21.12.2011, 02:47

7.6. Организация поточного производства

Поточное производство является наиболее эффективной формой организации производственного процесса.

Признаки поточного производства:

- закрепление одного или ограниченного числа наименований изделий за определенной группой рабочих мест;
- ритмическая повторяемость согласованных во времени технологических и вспомогательных операций;
- специализация рабочих мест;
- расположение оборудования и рабочих мест по ходу технологического процесса;
- применение специальных транспортных средств для межоперационной передачи изделий.

При поточном производстве реализуются принципы:
- специализации;
- параллельности;
- пропорциональности;
- прямоточности;
- непрерывности;
- ритмичности.

Поточное производство обеспечивает самую высокую производительность труда, низкую себестоимость продукции, наиболее короткий производственный цикл.

Основой (первичным звеном) поточного производства является поточная линия.

Расположение поточных линий (планировка) должна обеспечить:

- прямоточность и кратчайший путь движения изделия;
- рациональное использование производственных площадей;
- условия для транспортировки материалов и деталей к рабочим местам;
- удобство подходов для ремонта и обслуживания;
- достаточность площадей и оргоснастки для хранения требуемых запасов материалов и готовых деталей;
- возможность легкого удаления отходов производства.

Примеры расположения оборудования и пути движения изделия приведены на рис. 7.10 и 7.11.

Рис. 7.10. Движение изделия по поточной линии при расположении оборудования: 
а — одностороннем; б — двухстороннем

Рис. 7.11. Схемы движения изделий по поточным линиям: 
а — разветвляющаяся; б — зигзагообразная; в — П-образная; 
г — Т-образная; д — замкнутая; е — многоуровневая.

Транспортные средства в поточном производстве

В поточном производстве применяются разнообразные транспортные средства (табл. 7.3).

Таблица 7.3

Классификация транспортных средств в поточном производстве

ПризнакХарактеристика
НазначениеТранспортерыКонвейеры
Вид приводабесприводные:приводные:автономные:
 склизы
желобы
тележки
с электроприводом, гидроприводом, пневмоприводомпромышленные роботы, роботрейлеры с бортовыми компьютерами и программным управлением
Принцип действияМеханические транспортеры. Пневмотранспорт. Гидротранспорт. Электромагнитный транспорт. Волновой. Гравитационный. На воздушной подушке
КонструкцияТранспортеры и конвейеры:
ленточные, роликовые, шнековые, пластинчатые, цепные, тележечные, тросиковые (с тянущей шайбой), спутниковые (палетные)
Расположение в пространствеГоризонтально замкнутыеВертикально замкнутыеПодвесныеСмешанные (комбинированные)
Непрерывность действияНепрерывныеПульсирующие
ФункцияРаспределительные конвейерыРабочие конвейеры

В машиностроении и приборостроении широко применяются конвейеры — транспортные средства, служащие для транспортировки изделия или транспортировки и выполнения на нем рабочих операций и регламентирующие ритм работы поточной линии, то есть, играющие организующую роль в потоке. Если конвейер служит для перемещения изделий и поддержания ритма работы линии путем четкого адресования изделий по рабочим местам, он называется распределительным, если он служит и местом выполнения операции — называется рабочим.

Основы расчета и организации поточных линий

При проектировании и организации поточных линий выполняются расчеты показателей, определяющих регламент работы линии и методы выполнения технологических операций.

Такт поточной линии — промежуток времени между выпуском изделий (деталей, сборочных единиц) с последней операции или их запуском на первую операцию поточной линии.

Исходные данные расчета такта:

- производственное задание на год (месяц, смену);
- плановый фонд рабочего времени за этот же период;
- планируемые технологические пооперационные потери.

Такт поточной линии рассчитывается по формуле

r = Fд / Qвып,

где r — такт поточной линии (в мин.);
Fд — действительный годовой фонд времени работы линии в планируемом периоде (мин.);
Qвып — плановое задание на тот же период времени (шт.).

Fд = Dраб Ч dсм Ч Tсм Ч kпер Ч kрем,

где Dраб — число рабочих дней в году;
dсм — количество рабочих смен в сутки;
Tсм — продолжительность смены (в мин.);
kпер — коэффициент, учитывающий планируемые перерывы;
kрем — коэффициент, учитывающий время плановых ремонтов.

kпер = (Тсм - Тпер) / Тсм,

где Тпер — время планируемых внутрисменных перерывов;
kрем — рассчитывается аналогичным способом.

Классификация поточных линий приведена в табл. 7.4

Таблица 7.4

Классификация поточных линий

№ п/пПризнакХарактеристика
1Степень механизации технологических операций1.1. Механизированные
1.2. Комплексно-механизированные
1.3. Полуавтоматические
1.4. Автоматические
1.5. Гибкие интегрированные
2Количество типов 
одновременно обрабатываемых
и собираемых изделий
2.1. Однономенклатурные (обработка изделия одного наименования)
2.2. Многономенклатурные (обработка изделий нескольких наименований одновременно или последовательно)
3Характер движения изделий 
по операциям 
производственного процесса
3.1. Непрерывно-поточные (все операции синхронизированы во времени, т.е. равны или кратны такту линий)
3.2. Прерывно-поточные (перерывы в ходе производственного процесса и невозможность синхронизировать технологические операции во времени)
4Характер работы конвейера4.1. С рабочим конвейером, когда операции выполняются без снятия изделия с конвейера
4.2. С распределительным конвейером, когда конвейер осуществляет доставку изделия на рабочее место, а операция выполняется со снятием изделия с конвейера
4.3. С непрерывно движущимся конвейером
4.4. С пульсирующим конвейером

При неизбежных технологических потерях (планируемом выходе годных), такт r рассчитывается по формуле

r = Fд / Qзап,

где Qзап — количество изделий, запускаемых на поточную линию в планируемом периоде (шт):

Qзап = Qвып Ч kзап,

где kзап — коэффициент запуска изделий на поточную линию, равный величине, обратной коэффициенту выхода годных изделий (a); kзап = 1/a.

Выход годных изделий в целом по поточной линии определяется как произведение коэффициентов выхода годных по всем операциям линии

a = aЧ aЧ ... Ч an.

Ритм — это количество изделий, выпускаемых поточной линией в единицу времени.

Расчет количества оборудования поточной линии ведется по каждой операции технологического процесса:

 или ,

где  — расчетное количество оборудования (рабочих мест) на i-й операции поточной линии;
tштi — норма штучного времени на i-ую операцию (в мин);
kзапi — коэффициент запуска детали на i-ю операцию.

Принятое количество оборудования или рабочих мест на каждой операции Wпi определяется путем округления расчетного их количества  до ближайшего большего целого числа.

Коэффициент загрузки оборудования (рабочих мест) определяется как

.

Количество оборудования (рабочих мест) на всей поточной линии

,

где чоп — число операций технологического процесса.

Явочное количество рабочих (Ряв) равно количеству рабочих мест на поточной линии с учетом многостаночного обслуживания:

,

где kмо — коэффициент многостаночного обслуживания;

,

где S Рi — численность рабочих участка.

Общее число рабочих на поточных линиях определяется как среднесписочное:

,

где Рсп — среднесписочное число рабочих поточной линии;
d — процент потерь рабочего времени (отпуска, болезни и т.д.);
dсм — количество смен.

Скорость движения конвейера (V):

- при непрерывном движении конвейера V=L / r;
- при пульсирующем движении конвейера V= L/ tтp,

где L — расстояние между центрами двух смежных рабочих мест, то есть шаг конвейера (м);
tтp — время транспортировки изделия с одной операции на другую.

Задел — производственный запас материалов, заготовок или составных частей изделия для обеспечения бесперебойного протекания производственных процессов на поточных линиях.

Различают следующие виды заделов:

- технологический;
- транспортный;
- резервный (страховой);
- оборотный межоперационный.

Технологический задел (Zт) — детали (сборочные единицы, изделия), находящиеся непосредственно в процессе обработки:

,

где  — число рабочих мест на каждой операции;
ni — количество деталей, одновременно обслуживаемых на i-м рабочем месте.

Транспортный задел (Zтр) — количество деталей, находящихся в процессе перемещения между операциями и расположенных в транспортных устройствах.

При непрерывном движении конвейера

Zтр =LркР / V,

где Lрк — длина рабочей части конвейера (м);
V — скорость движения конвейера (м/мин);
Р — количество изделий в операционной партии (шт).

При периодической транспортировке

Транспортный технологический заделы зависят от параметров оборудования, тех. процессов.

Резервный (страховой) задел создается для нейтрализации последствий, связанных со случайным характером выхода изделия в брак, перебоев в работе оборудования и др.

где Тпереб — время возможного перебоя поступления изделий с данной операции на операцию, подлежащую страхованию (мин);
r — такт поточной линии (мин).

Оборотный межоперационный задел на линии — количество заготовок (деталей, сборочных единиц), находящихся между операциями линии и образующихся вследствие различной производительности смежных рабочих мест для выравнивания работы линий. Размер межоперационного задела постоянно колеблется от максимума до нуля и наоборот. Максимальная величина межоперационного оборотного задела определяется разностью производительностей смежных операций:

,

где Тсовм — время совместной работы оборудования на обеих операциях (в мин);
 — количество оборудования на подающих и потребляющих смежных операциях, работающего в период Тсовм (шт);
tштi — норма времени выполнения операции.

Синхронизация — процесс выравнивания длительности операции технологического процесса согласно такту поточной линии. Время выполнения операции должно быть равно такту линии или кратно ему.

Методы синхронизации:

- дифференциация операций;
- концентрация операций;
- установка дополнительного оборудования;
- интенсификация работы оборудования (увеличение режимов обработки);
- применение прогрессивного инструмента и оснастки;
- улучшение организации обслуживания рабочих мест и т.д.

7.7. Организация автоматизированного производства

Высшей формой поточного производства является автоматизированное производство, где сочетаются основные признаки поточного производства с его автоматизацией. В автоматизированном производстве работа оборудования, агрегатов, аппаратов, установок происходит автоматически по заданной программе, а рабочий осуществляет контроль за их работой, устраняет отклонения от заданного процесса, производит наладку автоматизированного оборудования.

Различают частичную и комплексную автоматизацию.

При частичной автоматизации рабочий полностью освобождается от работ, связанных с выполнением технологических процессов. В транспортных, контрольных операциях при обслуживании оборудования, в процессе установки — полностью или частично сокращается ручной труд.

В условиях комплексно-автоматизированного производства технологический процесс изготовления продукции, управление этим процессом, транспортировка изделий, контрольные операции, удаление отходов производства выполняются без участия человека, но обслуживание оборудования — ручное.

Основным элементом автоматизированного производства являются автоматические поточные линии (АПЛ).

Автоматическая поточная линия — комплекс автоматического оборудования, расположенного в технологической последовательности выполнения операций, связанный автоматической транспортной системой и системой автоматического управления и обеспечивающий автоматическое превращение исходных материалов (заготовок) в готовое изделие (для данной автолинии). В АПЛ рабочий выполняет функции наладки, контроля за работой оборудования и загрузки линии заготовками.

Основные признаки АПЛ:

- автоматическое выполнение технологических операций (без участия человека);
- автоматическое перемещение изделия между отдельными агрегатами линии.

Автоматические комплексы с замкнутым циклом производства изделия — ряд связанных между собой автоматическими транспортными и погрузо-разгрузочными устройствами автоматических линий.

Автоматизированные участки (цехи) включают в себя автоматические поточные линии, автономные автоматические комплексы, автоматические транспортные системы, автоматические складские системы; автоматические системы контроля качества, автоматические системы управления и т.д. Примерная структура автоматизированного производственного подразделения приведена на рис. 7.12.

Рис. 7.12. Структурный состав автоматизированного производственного подразделения

В условиях постоянно изменяющегося нестабильного рынка (тем более многономенклатурного производства) важной задачей является повышение гибкости (многофункциональности) автоматизированного производства, с тем чтобы максимально удовлетворить требования, нужды и запросы потребителей, быстрее и с минимальными затратами осваивать выпуск новой продукции.

Методы повышения гибкости автоматизированных производственных систем:

- использование автоматизированных систем технической подготовки производства (САПР);
- применение быстропереналаживаемых автоматических поточных линий;
- применение универсальных промышленных манипуляторов с программным управлением (промышленных роботов);
- стандартизация применяемого инструмента и средств технологического оснащения;
- применение в автоматических линиях автоматически переналаживаемого оборудования (на базе микропроцессорной техники);
- использование переналаживаемых транспортно-складских и накопительных систем и т.д.

Однако следует заметить, что любая универсализация требует значительных дополнительных затрат и при ее применении необходим взвешенный экономический подход на базе маркетинговой информации и исследований.

Автоматические поточные линии эффективны в массовом производстве.

Состав автоматической поточной линии:

- автоматическое оборудование (станки, агрегаты, установки и т.д.) для выполнения технологических операций;
- механизмы для ориентировки, установки и закрепления изделий на оборудовании;
- устройство для транспортировки изделий по операциям;
- контрольные машины и приборы (для контроля качества и автоматической подналадки оборудования);
- средства загрузки и разгрузки линий (заготовок и готовых деталей);
- аппаратура и приборы системы управления АПЛ;
- устройства смены инструмента и оснастки;
- устройства удаления отходов;
- устройство обеспечения необходимыми видами энергии (электрическая энергия, пар, инертные газы, сжатый воздух, вода, канализационные системы);
- устройства обеспечения смазочно-охлаждающими жидкостями и их удаления и т.д.

В состав автоматических линий последнего поколения также включаются электронные устройства:

1. "Умные супервизоры" с мониторами на каждой единице оборудования и на центральном пульте управления. Их назначение — заблаговременно предупреждать персонал о ходе процессов, происходящих в отдельных агрегатах и в системе в целом и давать инструкции о необходимых действиях персонала (текст на мониторе). Например:

- негативная тенденция технического параметра агрегата;
- информация о заделах и количестве заготовок;
- о браке и его причинах и т.д.

2. Статистические анализаторы с графопостроителями, предназначенные для статистической обработки разнообразных параметров работы АПЛ:

- время работы и простоев (причины простоев);
- количество выпускаемой продукции (всего, уровень брака);
- статистическая обработка каждого параметра обрабатываемого изделия на каждой автоматически контролируемой операции;
- статистическая обработка выхода из строя (поломка, сбой) систем каждой единицы оборудования и линии в целом и т.д.

3. Диалоговые системы селективной сборки (т.е. подбор параметров относительно грубо (неточно) обработанных деталей, входящих в сборочную единицу, сочетание которых обеспечивает высококачественные параметры сборочной единицы).

На предприятиях машиностроения и приборостроения применяются автоматические линии, отличающиеся между собой как по технологическим принципам действия, так и по формам организации. Классификация и характерные особенности автоматических поточных линий приведены в табл. 7.5.

Таблица 7.5

Классификация автоматических линий

ПризнакНаименование и краткая характеристика
1Гибкость1.1. Жесткие непереналаживаемые АЛ предназначенные для обработки одного изделия.
1.2. Переналаживаемые АЛ на определенную группу изделий одного наименования
1.3. Гибкие АЛ, состоящие из "обрабатывающих центров" гибких транспортно-складских систем с промышленными роботами и предназначенных для обработки любых деталей определенной номенклатуры и габаритов (например, корпусных деталей с габаритами от 100ґ100ґ100 до 600ґ600ґ600)
2Число одновременно обрабатываемых изделий2.1. Автолинии поштучной обработки
2.2. Автолинии групповой обработки
3Способ транспортировки изделия по АЛ3.1. АЛ с непрерывной транспортировкой обрабатываемых изделий
3.2. АЛ с периодической транспортировкой
4Кинематическая связь агрегатов (оборудования) АЛ4.1. АЛ с жесткой связью агрегатов(например, ротор-транспортер, желоб и т.д.)
4.2. АЛ с гибкой связью агрегатов (гибкость обеспечивается наличием перед каждым агрегатом устройства для накопления и выдачи запаса изделий (бункеры, кассеты, пеналы, накопительные башни и т.д.))
5Особенности транспортной системыСм таблицу 7.3. "Классификация транспортных средств"

При проектировании автоматических поточных линий выполняется ряд расчетов. В основном они не отличаются от расчетов неавтоматизированных линий, но имеются некоторые особенности.

Такт АПЛ определяется по формуле

,

где r — такт АПЛ (мин);
Fн — номинальный годовой фонд времени работы линии в одну смену (час);
dсм — число смен работы;
h — коэффициент технического использования АПЛ, учитывающий потери времени при различных неполадках в работе оборудования линий и затраты времени на подналадку;
Qвып — плановое задание (шт).

При величине нормы времени отдельной операции линии больше такта линии за такт принимают норму времени лимитирующей операции.

В бункерных (гибких) АЛ образуются заделы :

- компенсирующие;
- пульсирующие.

Компенсирующие заделы АПЛ (Zk) образуются при разной производительности сменных участков АПЛ:

,

где Тк — период времени для создания компенсирующего задела, т.е. промежуток времени непрерывной работы сменных участков АПЛ с разными тактами работы, мин;
rм и rб — меньший и больший такты работы смежных участков (операций) АПЛ, мин.

Пульсирующие заделы создаются для поддержания ритмичности выпуска продукции. Их назначение — предупредить аритмию хода производственного процесса на отдельных операциях АПЛ.

7.8. Гибкое интегрированное производство

Повышение нестабильности рынка, усиление конкурентной борьбы за потребителя между производителями, практически неограниченные возможности научно-технического прогресса привели к частой сменяемости продукта. Главным фактором в конкурентной борьбе стал фактор времени. Фирма, которая может за короткий срок довести идею до промышленного освоения и предложит потребителю высококачественный и относительно дешевый товар, становится победителем.

Быстрая сменяемость продукции и требования ее дешевизны при высоком качестве приводит к противоречию:

- с одной стороны, низкие производственные издержки (при прочих равных условиях) обеспечиваются применением автоматических линий, специального оборудования;
- но с другой стороны, проектирование и изготовление такого оборудования нередко превышают 1,5—2 года (даже в настоящих условиях), то есть к моменту начала выпуска изделия оно уже морально устареет.

Применение же универсального оборудования (неавтоматического) увеличивает трудоемкость изготовления, то есть цену, что не приемлется рынком.

Такая ситуация возникла в 60-х годах нашего столетия и, естественно, перед станкостроительными фирмами стала задача создания нового оборудования, которое бы удовлетворяло следующим требованиям:

- универсальности, то есть легкой переналаживаемости (функциональной инвариантности);
- автоматизации;
- автоматической переналаживаемости по команде с управляющей вычислительной машины (УВМ);
- встраиваемости в автоматические линии и комплексы;
- высокой точности;
- высокой надежности;
- автоматической подналадки (корректировки) инструмента в процессе выполнения операции и т.д.

И такое оборудование было создано. К нему относятся:

"обрабатывающие центры" механической обработки с УВМ (с многоинструментальными магазинами (до 100 и более инструментов), с точностью позицирования изделия относительно инструмента 0,25 мкм, с "умными супервизорами" функционирования всех систем, с активным контролем и автоматической подналадкой инструмента);
промышленные роботы с программным управлением как универсальное средство манипулирования деталями, универсально-транспортные погрузочно-разгрузочные средства, а также переналаживаемые роботы-маляры, роботы-сварщики, роботы-сборщики и т.д.;
- лазерные раскройные установки, заменяющие сложнейшие комплексы холодной штамповки, которые сами определяют оптимальный раскрой материалов;
- термические многокамерные агрегаты, где в каждой отдельной камере производится термообработка или химико-термическая обработка по заданной программе;
- высокоточные трехкоординатные измерительные машины с программным управлением (на гранитных станинах, с износостойкими (алмазными, рубиновыми) измерителями);
- лазерные бесконтактные измерительные устройства и т.д.

Этот список можно продолжать довольно долго. На базе перечисленного оборудования созданы:

- вначале гибкие производственные модули ГИМ (обрабатывающий центр, робот-манипулятор, автоматизированный склад, УВМ);
- затем ГИК — гибкие интегрированные комплексы и линии;
- гибкие интегрированные участки, цехи, производства, заводы.

При создании гибкой производственной системы происходит интеграция:

- всего разнообразия изготовляемых деталей в группы обработки;
- оборудования;
- материальных потоков (заготовок, деталей, изделий, приспособлений, оснастки, основных и вспомогательных материалов);
- процессов создания и производства изделий от идеи до готовой продукции (происходит слияние воедино основных, вспомогательных и обслуживающих процессов производства);
- обслуживания за счет слияния всех обслуживающих процессов в единую систему;
- управления на основе системы УВМ, банков данных, пакетов прикладных программ, САПР, АСУ;
- потоков информации для принятия решения по всем подразделениям системы о наличии и применении материалов, заготовок, изделий, а также средств отображения информации;
- персонала за счет слияния профессий (конструктор-технолог-программист-организатор).

В результате системы ГИП имеют следующие структурные составные части:

- автоматизированную транспортно-складскую систему (АТСС);
- автоматическую систему инструментального обеспечения (АСИО);
- автоматическую систему удаления отходов (АСУО);
- автоматизированную систему обеспечения качества (АСОК);
- автоматизированную систему обеспечения надежности (АСОН);
- автоматизированную систему управления ГПС (АСУ ГПС);
- систему автоматизированного проектирования (САПР);
- автоматизированную систему технологической подготовки производства (АСТПП);
- автоматизированную систему оперативного планирования производства (АСОПП);
- автоматизированную систему содержания и обслуживания оборудования (АССОО);
- автоматизированную систему управления производством (АСУП).

Организация ГПС показана на примере гибкой автоматической линии по изготовлению корпусных деталей фирмы "Тойота" (блоков цилиндров автомобильных двигателей) (рис. 7.13).

1 — обрабатывающий центр (с инструментальным магазином для 40 инструментов);
2 — 3-х координатная измерительная машина с программным управлением;
3 — автоматическая моечная машина;
4 — робот-манипулятор;
5 — автоматизированный склад готовых изделий;
6 — автоматизированный склад заготовок;
7 — робот-штабелер;
8 — автоматизированный транспортер с приводными роликами;
9 — управляющая вычислительная машина линии и пульт управления;
10 — место подготовки инструментальных барабанов;
11 — автоматизированная система удаления отходов;
12 — транспортер подачи заготовок

Рис 7.13. Гибкая автоматическая линия обработки корпусных деталей

Гибкая автоматическая линия предназначена для обработки 80 наименований автомобильных блоков цилиндров, изготавливаемых по заказу в любой последовательности.

Линия состоит из следующих компонентов:

- 4-х обрабатывающих центров (1) с инструментальными барабанами с 40 инструментами;
- трехкоординатной измерительной машины с программным управлением (2);
- автоматической моечной машины (3);
- автоматической транспортно-складской системы, состоящей из двух вертикальных ячеистых автоматизированных складов (5, 6) с двумя роботами-штабелерами (7), автоматизированного двухдорожечного роликового транспортера с автономным приводом на каждый ролик (8);
- пульта управления линией с УВМ (9);
- рабочего места подготовки инструментальных барабанов (10);
- автоматизированной системы удаления отходов (11);
- транспортера заготовок (12).

Заготовки с обработанными базовыми (технологическими) поверхностями поступают по транспортеру 12 на шариковый стол, где с помощью ручного манипулятора устанавливаются на специальные приспособления — "спутники" (палеты). На каждую заготовку приклеивается магнитный информационный носитель, в котором содержится информация о заготовке (номер, материал и т.д.). По команде оператора робот-штабелер устанавливает "спутник" с закрепленной на нем заготовкой в любую свободную ячейку склада заготовок. Считывающее устройство ячейки передает информацию на УВМ участка.

При освобождении от работы любого обрабатывающего центра 1 УВМ линии, в соответствии с оперативным планом производства, переданным с УВМ участка изготовления блоков цилиндров, дает команду роботу-штабелеру 7 склада заготовок 6 на подачу в обработку очередной заготовки определенного типоразмера.

Робот-штабелер извлекает спутник с необходимой заготовкой из ячейки склада и устанавливает на одну из дорожек автоматического транспортера, который получает команду от УВМ о доставке "спутника" с заготовкой к свободному обрабатывающему центру (ОЦ). Остановка заготовки против заданного ОЦ достигается вращением роликов транспортера с автономными приводами от склада до заданного места, а остальные ролики остаются неподвижными.

Одновременно с командой роботу-штабелеру на подачу заготовки УВМ переписывает программу обработки указанной заготовки на программоноситель обрабатывающего центра, который за время движения заготовки по транспортной системе меняет инструмент для выполнения первого перехода операции и устанавливает необходимые режимы обработки, то есть полностью подготовлен для работы с новой (совершенно другой по параметрам обработки) заготовки.

Робот-манипулятор 4, также по команде УВМ, перемещается по рельсовой дорожке к свободному обрабатывающему центру и производит перегрузку с транспортера 8 на рабочий стол обрабатывающего центра, где автоматически (с помощью байонетных зажимов) "спутник" с заготовкой закрепляется и производится полная обработка блока цилиндров.

По окончании обработки "спутник" с готовой деталью перегружается на транспортер, а с транспортера — в моечную машину 3. После мойки и сушки таким же образом обработанная деталь поступает на контрольную машину, где контролируется по программе, переданной с УВМ.

В случае соответствия параметров с заданными готовая деталь поступает по транспортной системе в склад готовых изделий, о чем получают информацию УВМ линии.

Перед помещением в склад готовых изделий оператор снимает готовую деталь со "спутника", который возвращается на склад заготовок.

В случае, если контролируемые параметры изделия не соответствуют заданным, контрольная машина вызывает оператора, который принимает решение. При необходимости по команде оператора контрольная машина распечатывает результаты контроля.

С целью экономии рабочего времени контроль за состоянием инструментов в инструментальном барабане и его смена производится вне обрабатывающего центра на специальном рабочем месте. Для этого инструментальный барабан снимается мостовым краном со специальным поворотным устройством и тут же устанавливается новый барабан.

Контроль и настройка инструмента (в специальных инструментальных державках) производится с помощью инструментального микроскопа.

Обслуживают участок 3 человека:

- инженер-оператор (он же наладчик, оператор УВМ, программист и контролер);
- рабочий склада заготовок и готовых изделий;
- рабочий-инструментальщик.

Использование ГПС приводит к полному изменению подходов к проектированию, освоению и серийному производству, а также планированию производства (в том числе и оперативному).

Однако стоимость такой ГПС очень велика и требуется тщательная экономическая проработка эффективности ее применения.

Производственная структура ГПС приведена на рис 7.14 (сравните с рис. 7.3 и 7.4).

Рис 7.14. Производственная структура гибкой производственной системы (фрагмент)

http://www.aup.ru/




БАНКОВСКОЕ ДЕЛО
БУХГАЛТЕРСКИЙ, УПР. И ФИН. УЧЕТ
БЮДЖЕТ И БЮДЖЕТНАЯ СИСТЕМА РФ
ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ
ГУМАНИТАРНЫЕ НАУКИ
ДОКУМЕНТОВЕДЕНИЕ И ДЕЛОПРОИЗВОДСТВО
ИНВЕСТИЦИИ
ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЭКОНОМИКЕ
ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ
МАРКЕТИНГ
МЕНЕДЖМЕНТ
МЕТ. РЕКОМЕНДАЦИИ, ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
МИРОВАЯ ЭКОНОМИКА И МЭО
НАЛОГИ И НАЛОГООБЛОЖЕНИЕ
ПЛАНИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ
ПРАВОВЕДЕНИЕ
РАЗРАБОТКА УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
РЫНОК ЦЕННЫХ БУМАГ
СТАТИСТИКА
УПРАВЛЕНИЕ ПЕРСОНАЛОМ
УЧЕБНИКИ, ЛЕКЦИИ, ШПАРГАЛКИ (СКАЧАТЬ)
ФИНАНСОВЫЙ МЕНЕДЖМЕНТ
ФИНАНСЫ, ДЕНЕЖНОЕ ОБРАЩЕНИЕ И КРЕДИТ
ЦЕНЫ И ЦЕНООБРАЗОВАНИЕ
ЭКОНОМИКА
ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ
ЭКОНОМИКА И СОЦИОЛОГИЯ ТРУДА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ (МИКРО-, МАКРО)
ЭКОНОМИЧЕСКИЙ АНАЛИЗ
ЭКОНОМЕТРИКА
Оформить заказ
Ваше имя *
Ваш e-mail *
Контактный телефон
Город *
Учебное заведение *
Предмет *
Тип работы *
Тема работы/вариант *
Кол-во страниц
Срок выполнения *
Прикрепить файл
Дополнительные условия


Статистика
Онлайн всего: 47
Гостей: 47
Пользователей: 0