Контрольные, курсовые, рефераты, тесты – готовые и на заказ!
 Гарантия качества, доступные цены, индивидуальный подход
 Работы выполняют высококвалифицированные специалисты
Войти      Регистрация
 тел. 8-912-388-82-05
  std72@mail.ru
> 20 лет успешной работы
> 50000 выполненных заказов
Отзывы/вопросы

Форма входа



Главная » Учебно-методические материалы » ГУМАНИТАРНЫЕ НАУКИ » Шпаргалка по концепциям современного естествознания. Кусков А.С., Барышева А.Д.

Вопросы 20-29
21.12.2011, 23:06

20. ВЗАИМОДЕЙСТВИЕ И СВЯЗЬ В ПРИРОДЕ

Под энергией связи понимают энергию связанной системы каких-либо частиц, равную работе, которую необходимо затратить, чтобы разделить эту систему на составляющие ее частицы и удалить их друг от друга на такое расстояние, на котором их взаимодействием можно пренебречь. Энергия связи определяется взаимодействием частиц и является отрицательной величиной, так как при образовании связанной системы энергия выделяется. Абсолютная величина энергии связи характеризует прочность связи и устойчивость системы. Например, для атомного ядра энергия связи определяется сильным взаимодействием нуклонов в ядре. Для наиболее устойчивых ядер она составляет 8 X 10 эВ/нуклон (удельная энергия связи – энергия связи, приходящаяся на один нуклон). Эта энергия может выделиться при слиянии легких ядер в более тяжелое ядро (термоядерная реакция), а также при спонтанном делении тяжелых ядер. Термоядерные реакции происходят при очень высоких температурах. Такие температуры необходимы для преодоления электростатического барьера, обусловленного взаимным отталкиванием ядер (как одноименно заряженных частиц). Без этого невозможно сближение ядер на расстояние порядка радиуса действия ядерных сил. Поэтому термоядерные реакции в природных условиях протекают лишь в недрах звезд. Так как термоядерные реакции представляют собой процессы образования сильно связанных ядер из более рыхлых, то они сопровождаются выделением в продуктах реакции избыточной кинетической энергии, равной увеличению суммарной энергии связи. На использовании этой выделившейся энергии основана ядерная энергетика.

Энергия связи, электронов в атоме или молекуле определяется электромагнитным взаимодействием. Для атома водорода в основном состоянии она равна 13,6 эВ. Этим же взаимодействием обусловлена энергия связи атомов в молекуле и кристалле. Например, ковалентное межатомное взаимодействие возникает в результате обобществления валентных электронов парой соседних атомов, при этом происходит понижение энергии.

Энергия связи, обусловленная гравитационным взаимодействием, обычно мала и имеет значение лишь для некоторых космических объектов, например для черных дыр. Они возникают в результате сжатия тела гравитационными силами до размеров, меньших его гравитационного радиуса: rx = 2GM /c2 где М– масса тела, G-гравитационная постоянная, с – численное значение скорости света).

Черной дырой может стать звезда. У вращающейся черной дыры вне горизонта (области, за которую не выходит свет) существует особая область – эрго-сфера. Вещество, попавшее в эргосферу, неизбежно начинает вращаться вокруг черной дыры. Наличие эргосферы может привести к потере черной дырой энергии вращения. Это возможно в случае, когда некоторое тело, влетев в эргосферу, распадается на две части, причем одна из них продолжает падение на черную дыру, а другая вылетает из эргосферы по направлению вращения. Энергия вылетающей части может при определенных условиях превышать первоначальную энергию всего тела.

Таким образом, понятие энергии связи ядра играет особо важную роль в ядерной физике. Энергия связи позволяет объяснить устойчивость ядер, а также выяснить, какие процессы ведут к выделению ядерной энергии.

21. ОБЩАЯ ХАРАКТЕРИСТИКА ФИЗИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ

Одно из определений физики как науки таково: физика является учением о различных типах взаимодействий. Взаимодействие является основной причиной движения материи. Оно присуще всем материальным объектам, т. е. можно сделать вывод, что взаимодействие универсально, как и движение.

Основными характеристиками движения являются энергия и импульс, и именно энергией и импульсом обмениваются объекты при взаимодействии. В классической механике взаимодействие определяется силой, с которой один материальный объект действует на другой. В более общем случае взаимодействие характеризуется потенциальной энергией.

О том, как осуществляется взаимодействие между объектами, существует две концепции: близ-кодействия и дальнодействия. Первая теория говорит о том, что взаимодействие материальных объектов передается через пустое пространство мгновенно. Эта теория служила основой классической физики и существовала до конца XIX в. В настоящее время экспериментально подтверждена концепция дальнодействия: взаимодействия передаются посредством физических полей с конечной скоростью, не превышающей скорости света в вакууме.

Взаимодействия материальных объектов и систем, наблюдаемые нами в окружающем мире, весьма разнообразны. Но в общем случае их можно отнести к четырем видам фундаментальных взаимодействий: гравитационному, электромагнитному, слабому и сильному. Гравитационное взаимодействие проявляется во взаимном притяжении любых материальных объектов, имеющих массу. Электромагнитное взаимодействие обусловлено электрическими зарядами и передается посредством электрического и магнитного полей. Сильное взаимодействие обеспечивает связь нуклонов в ядре и определяется ядерными силами. Слабое взаимодействие обусловливает большинство распадов элементарных частиц, взаимодействие нейтрино с веществом и другие процессы.

Для количественной характеристики фундаментальных взаимодействий обычно используют безразмерную константу взаимодействия, определяющую величину взаимодействия и радиус действия. Для гравитационного взаимодействия эта константа равна 6 ? 10-39, а радиус его действия бесконечен. Для электромагнитного взаимодействия значение константы составляет 1/137, а радиус его действия также неограничен. Константа сильного взаимодействия равна 1, оно проявляется в пределах размеров ядра. Для слабого взаимодействия постоянная равна 10-14, а радиус взаимодействия – порядка 10-18.

Фундаментальные взаимодействия характеризуются соответствующими константами, которые в зависимости от систем координат могут иметь различные значения. Обычно используются следующие значения этих констант. Гравитационное взаимодействие характеризуется постоянной Кавендиша Gm= 6,7 ? 10-11н ? м2/кг2. Слабое взаимодействие – универсальной постоянной Gm= 1,4 ? 10-62Дж ? м3. Электромагнитное и сильное взаимодействия обычно характеризуются безразмерными постоянными. Первое – ge=1/137 – так называемая «постоянная тонкой структуры»; второе – g5= 8 ? 10-2.

Создание единой теории фундаментальных взаимодействий – одна из важнейших задач современного естествознания. Предполагается, что при относительно больших энергиях взаимодействия частиц все четыре фундаментальных взаимодействия характеризуются единой силой.

22. ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ: ГРАВИТАЦИОННОЕ, ЭЛЕКТРОМАГНИТНОЕ, СЛАБОЕ И СИЛЬНОЕ

Наблюдаемые в природе взаимодействия материальных объектов и систем весьма разнообразны. Однако, как показали физические исследования, все взаимодействия можно отнести к четырем видам фундаментальных взаимодействий:

– гравитационному;

– электромагнитному;

– сильному;

– слабому.

Гравитационное взаимодействие проявляется во взаимном притяжении любых материальных объектов, имеющих массу. Оно передается посредством гравитационного поля и определяется фундаментальным законом природы – законом всемирного тяготения, сформулированным И. Ньютоном: между двумя материальными точками массой m1 и m2, расположенными на расстоянии rдруг от друга, действует сила F, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними:

F = G ? (m1m2)/r2. где G-гравитационная постоянная. В соответствии с квантовой теорией г' поля переносчиками гравитационного взаимодействия являются гравитоны – частицы с нулевой массой, кванты гравитационного поля.

Электромагнитное взаимодействие обусловлено электрическими зарядами и передается посредством электрического и магнитного полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное – при их движении. Изменяющееся магнитное поле порождает переменное электрическое поле, которое в свою очередь является источником переменного магнитного поля.

Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики: законом Кулона, законом Ампера и другими, – и в обобщенном виде – электромагнитной теорией Максвелла, связывающей электрическое и магнитное поля. Получение, преобразование и применение электрического и магнитного полей служат основой для создания разнообразных современных технических средств.

Согласно квантовой электродинамике переносчиками электромагнитного взаимодействия являются фотоны – кванты электромагнитного поля с нулевой массой.

Сильное взаимодействие обеспечивает связь нуклонов в ядре. Оно определяется ядерными силами, обладающими зарядовой независимостью, короткодей-ствием, насыщением и другими свойствами. Сильное взаимодействие отвечает за стабильность атомных ядер. Чем сильнее взаимодействие нуклонов в ядре, тем стабильнее ядро. С увеличением числа нуклонов в ядре и, следовательно, размера ядра удельная энергия связи уменьшается и ядро может распадаться.

Предполагается, что сильное взаимодействие передается глюонами – частицами, «склеивающими» кварки, входящие в состав протонов, нейтронов и других частиц.

В слабом взаимодействии участвуют все элементарные частицы, кроме фотона. Оно обусловливает большинство распадов элементарных частиц, взаимодействие нейтрино с веществом и другие процессы. Слабое взаимодействие проявляется главным образом в процессах бета-распада атомных ядер. Переносчиками слабого взаимодействия являются промежуточные, или векторные, бозоны – частицы с массой, примерно в 100 раз большей массы протонов и нейтронов.

23. СОЗДАНИЕ ТЕОРИИ ВЕЛИКОГО ОБЪЕДИНЕНИЯ

Наблюдаемые в природе взаимодействия материальных объектов и систем весьма разнообразны, но все они могут быть отнесены к четырем видам фундаментальных взаимодействий: гравитационному, электромагнитному, сильному и слабому. Связаны ли эти виды фундаментальных взаимодействий между собой?

В результате экспериментальных исследований взаимодействий элементарных частиц в 1983 г. было обнаружено, что при больших энергиях столкновения протонов слабое и электромагнитное взаимодействия не различаются – их можно рассматривать как единое электрослабое взаимодействие. Теорию электрослабых сил нельзя считать полностью доказанной, но основная ее идея проверена многими опытами. Эта идея сводится к тому, что электромагнитное поле представляет собой часть более общего электрослабого поля, состоящего из нескольких форм, или компонентов. Этих компонентов в четыре раза больше, чем в электромагнитном поле.

Радиус действия слабых сил – приблизительно 10-16см. На этом масштабе они объединяются с электромагнитными силами, а на меньших масштабах электрослабые поля неразделимы, подобно электрическому и магнитному полям быстро движущегося заряда.

Что же происходит дальше? Тут и начинается область гипотез. Согласно большинству из них электрослабые взаимодействия объединяются с сильными приблизительно на масштабе 10 – 30 см. Но такие малые масштабы трудно представить.

Однако решающий эксперимент для проверки этого так называемого Великого объединения может быть проведен в ближайшие годы. Дело в том, что почти неизбежным следствием Великого объединения является нестабильность протона.

Это процесс совершенно нового типа, при котором в нуклонах происходят уже не переходы одних кварков в другие, как при ?-распаде, а превращение кварков в антикварки и лептоны. Оказывается нарушенным закон сохранения барионного заряда. Вероятности таких превращений, конечно, очень малы, иначе просто не существовали бы ни мы сами, ни окружающая нас ядерная материя, – она бы рассыпалась на более легкие частицы.

Другое вероятное следствие Великого объединения – это существование «монополей», одиночных магнитных зарядов. Их масса должна быть фантастически велика.

АльбертЭйнштейн предполагал возможность объединения электромагнитного взаимодействия с гравитационным. Теперь объединение электромагнитного взаимодействия со слабым и, возможно, сильным взаимодействиями, это будет, можно сказать, суперобъединение – все четыре силы природы сводятся к одной исходя из какого-то фундаментального принципа. Возможно, такие экстремальные условия существовали в начальный момент зарождения Вселенной. При расширении Вселенной и быстром охлаждении образовавшегося вещества единое взаимодействие разделилось на четыре принципиально отличающихся друг от друга взаимодействия, определивших структурную организацию материи.

Создание единой теории фундаментальных взаимодействий – одна из важнейших задач современного естествознания. Решение такой задачи потребует синтеза естественно-научных знаний о материальных объектах разных масштабов – от элементарных частиц до Вселенной. Эта теория обеспечит концептуальное обобщение знаний об окружающем нас мире.

24. СТРУКТУРНЫЕ УРОВНИ ОРГАНИЗАЦИИ МАТЕРИИ

Важнейшее свойство материи – ее структурная и системная организация, которая выражает упорядоченность существования материи в виде огромного разнообразия материальных объектов различных масштабов и уровней, связанных между собой единой системой иерархии. Непосредственно наблюдаемые нами тела состоят из молекул, молекулы – из атомов, атомы – из ядер и электронов, атомные ядра – из нуклонов, нуклоны – из кварков. Сегодня принято считать, что электроны и гипотетические частицы кварки не содержат более мелких частиц.

С биологической точки зрения самая крупная живая система – биосфера – состоит из биоценозов, содержащих множество популяций живых организмов различных видов, а популяции образуют отдельные особи, живой организм которых состоит из клеток со сложной структурой, включающих ядро, мембрану и другие составные части.

В современном естествознании множество материальных систем принято условно делить на микромир, макромир и мегамир. К микромиру относятся молекулы, атомы и элементарные частицы. Материальные объекты, состоящие из огромного числа атомов и молекул, образуют макромир. Самую крупную систему материальных объектов составляет мегамир – мир планет, звезд, галактик и Вселенной.

Материальные системы микро-, макро– и мегами-ра различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются.

Отношение самого большого размера к самому малому, составляющее сегодня 44 порядка, возрастало и будет возрастать по мере накопления естественно-научных знаний об окружающем мире.

Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро– и мегамира.

Материальные объекты микро-, макро– и мегамира отличаются друг от друга не только своими размерами, но и другими количественными характеристиками. Так, один моль любого вещества содержит огромное число молекул или атомов, называемое постоянной Авогадро и примерно равное 6 х 1023моль-1.

Свойства и особенности материальных объектов микро-, макро– и мегамира описываются разными теориями, принципами и законами. При объяснении процессов в микромире используются принципы и теории квантовой механики, квантовой статистики и т. п. Изучение материальных объектов макросистем основано на законах и теориях классической механики Ньютона, термодинамики и статической физики, классической электродинамики Максвелла. Вместе с тем многие понятия и концепции (энергия, импульс и др.), введенные в классической физике для описания свойств материальных объектов макромира, с успехом используются для объяснения процессов в микро-и мегамире. Движение планет Солнечной системы описывается законом всемирного тяготения и законами Кеплера. Происхождение и эволюция Вселенной объясняются на основании комплекса естественнонаучных знаний, включающих физику элементарных частиц, квантовую теорию поля и т. п.

Материальные объекты образуют целостную систему лишь в том случае, если энергия связи между ними больше кинетической энергии каждого из них. Энергия связи – это та энергия, которую необходимо затратить, чтобы полностью «растащить» систему на отдельные ее составляющие.

25. СТРУКТУРНОСТЬ И СИСТЕМНОСТЬ МАТЕРИИ

Материя – одно из фундаментальных понятий философии и науки. По определению В. И. Ленина, материя – философская категория для обозначения объективной реальности, отображаемой нашими ощущениями и существующей независимо от них. Важнейшим свойством материи и материальных образований является ее системность и структурность.

Система – это комплекс взаимодействующих элементов, или, что одно и то же, ограниченное множество взаимодействующих элементов. Для системы обычно характерна иерархичность строения – последовательное включение системы более низкого уровня в систему более высокого уровня.

Мы знаем, что непосредственно наблюдаемые нами тела состоят из молекул, молекулы – из атомов, атомы – из ядер и электронов, атомные ядра – из нуклонов (нейтронов и протонов), нуклоны – из кварков. Сегодня принято считать, что электроны и кварки не содержат более мелких частиц.

Поэтому в современном естествознании множество материальных систем принято условно делить на микромир, макромир и мегамир.

К микромиру относятся молекулы, атомы и элементарные частицы. Макромир составляют материальные объекты, состоящие из огромного числа атомов и молекул. Мир планет, звезд, галактик и Вселенной образует мегамир.

Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро– и мегамира. Таким образом, можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях эволюции Вселенной.

Свойства и особенности материальных объектов микро-, макро– и мегамира отличаются друг от друга не только размерами, но и количественными характеристиками. Материальные объекты образуют целостную систему, если энергия связи между ними больше кинетической энергии каждого из них. Энергия связи – это та энергия, которую надо затратить на «растаскивание» всей системы на отдельные ее части полностью.

С другой стороны, в классической физике различали два вида материи – вещество и поле. Вещество – это вид материи, обладающий массой покоя. В конечном счете вещество слагается из элементарных частиц, масса покоя которых не равна нулю (в основном из электронов, протонов и нейтронов). В классической физике вещество и поле противопоставлялись друг другу как два вида материи, у первого из которых структура дискретна, а у второго – непрерывна. Квантовая физика, внедрившая идею двойственной корпускулярно-волновой природы любого микрообъекта, привела к нивелированию этого представления. Выявление тесной взаимосвязи вещества и поля привело к углублению представлений о структуре материи. На этой основе были строго разграничены понятия вещества и материи, отождествлявшиеся в науке много веков.

Изучением свойств вещества в его различных агрегатных состояниях занимаются физика твердого тела, физика жидкостей и газов, физика плазмы. Свойства и структуру материи на микроскопическом уровне изучают атомная физика, ядерная физика, физика элементарных частиц. Распределение и структуру материи во Вселенной изучает астрофизика.

26. ПОЛЕ И ВЕЩЕСТВО

Материя – философская категория для обозначения объективной реальности, отражаемой нашими ощущениями и существующей независимо от них. В классических представлениях естествознания различают два вида материи – вещество и поле.

Согласно теории корпускулярно-волнового дуализма свет – это поток частиц – квантов или фотонов, несущих определенные порции энергии и импульса, но в то же время свет – это волны электромагнитного поля, обладающие энергией и импульсом и распространяющиеся в пространстве со скоростью света.

В квантовой механике любой частице соответствует волна. А когда частиц много? С точки зрения квантовой механики можно было бы сопоставить каждой частице свое поле. Однако опыт свидетельствует о полной неразличимости тождественных частиц. Конечно, уэлектронов могут быть разные энергии и импульсы, но при одних и тех же параметрах электроны одинаковы.

Итак, если все частицы одинаковы, как волны в одной и той же среде, то, значит, эта среда, т. е. поле, является более фундаментальным понятием.

Поле определяется через силы, действующие на некоторый пробный объект (заряд, массу), помещенный в данную точку пространства. Пространство непрерывно. В каждой его точке эта сила имеет вполне определенное значение, считающееся характеристикой поля. При этом переход от точки к точке непрерывный и плавный. Важным свойством поля является непрерывность его характеристик. Именно непрерывность позволяет эффективно применять математические методы для описания физических характеристик разнообразных объектов. К настоящему времени известно несколько типов физических полей, соответствующих типам взаимодействий, – электромагнитное и гравитационное поля, поле ядерных сил, волновые поля элементарных частиц.

С математической точки зрения поле – это произвольная функция или набор функций, координат и времени.

Поля могут быть постоянными и переменными. Например, электрическое и магнитное поля фотона являются переменными (они синусоидально зависят от координат и времени, т. е. изменяются по гармоническому закону), а магнитное поле Земли и электрическое поле в грозовой туче постоянные.

Вещество построено из электронов и нуклонов (протонов и нейтронов). Последние в свою очередь состоят из кварков. Различного рода взаимодействия между частицами вещества осуществляются полями. Кванты полей, переносящих электромагнитное взаимодействие, представляют собой фотоны, гравитационное взаимодействие – гравитоны, сильное взаимодействие – глюоны, слабое взаимодействие – векторные бозоны.

В классической физике вещество и поле абсолютно противопоставлялись друг другу как два вида материи, у первого из которых структура дискретна, а у второго – непрерывна. Открытие в квантовой теории двойственной корпускулярно-волновой природы микрообъектов нивелирует это противопоставление. На этой основе были строго разделены категории вещества и материи, на протяжении многих веков отождествлявшиеся в философии и науке, причем философское значение осталось за категорией материи, а понятие вещество сохранило научный смысл в физике и химии. В земных условиях для веществ известны четыре состояния: твердые тела, жидкости, газы, плазма.

27. КЛАССИФИКАЦИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

В узком смысле слова элементарными можно назвать частицы, у которых внутренняя структура никогда не наблюдалась. К ним относятся, например, электрон и фотон. Подавляющее большинство элементарных частиц(мезоны, барионы)обладают внутренней структурой.

В 1920-е гг. были известны две частицы – электрон и протон, а также два вида взаимодействий – гравитационное и электромагнитное. На их основе объяснялись все явления природы.

Можно выделить два основных потока открытий новых элементарных частиц. Первый приходится на 1930-1950-е гг., когда прежде всего были найдены нейтрон и позитрон. Позитрон – античастица по отношению к электрону; он подобен электрону во всем, но обладает положительным, а не отрицательным зарядом. При соударении электрона с позитроном, как и при соударении любой частицы с соответствующей ей античастицей, может произойти их аннигиляция, т. е. исчезновение частиц, причем их энергия превращается в другие формы.

Далее было обнаружено нейтрино. Сейчас известно несколько разновидностей нейтрино. Концепция существования нейтрино спасла несколько физических законов. Причем один тип взаимодействует только с электроном, а другой – только с р-мезоном. Существование мезонов было предсказано Х. Юкавой в 1935 г. В 1937 г. был открыт первый мезон, но не тот (р-мезон). Предсказанный же Юкавой мезон был открыт в 1947 г. (р-мезон). Он имеет отношение к ядерным взаимодействиям.

Второй поток открытий элементарных частиц пришелся на 1960–1965 гг. К концу этого периода число частиц превысило 200. Само понятие элементарности потеряло смысл, поскольку не существует критерия элементарности. Использование стабильности частиц или времени их жизни в качестве критерия оказалось неэффективным.

Стабильных (не самораспадающихся) элементарных частиц всего четыре: электрон, протон, фотон и все виды нейтрино. На основе этих частиц невозможно построить все остальные, обладающие способностью самопроизвольно распадаться. Среди этих частиц дольше всех живет свободный нейтрон, меньше всех – нейтральный ж-мезон (10-16с). В конце 1960 г. был открыт новый класс частиц, получивший название резонансов. Эти частицы живут крайне мало: порядка 10-23с.

Стабильность протона, электрона, фотона и нейтрино означает, что они могут претерпевать изменения лишь при взаимодействиях с другими частицами.

Следует особо подчеркнуть, что существование античастиц не гипотетично, а модели с их использованием не являются плодом фантазии физиков. В 1956 г. был открыт антинейтрон. Если электрон от позитрона и протон от антипротона отличаются прежде всего знаком зарядов, то чем различаются нейтрон и антинейтрон? Нейтрон не имеет электрического заряда, но имеет связанное с ним магнитное поле. Причина этого не совсем ясна, хотя установлено, что магнитное поле нейтрона ориентировано в одном направлении, а магнитное поле антинейтрона – в противоположном.

Античастицы имеют и другие фундаментальные свойства по сравнению с частицами. Так, при переходе от мира к антимиру меняются местами «право» и «лево» и одновременно меняются знаки всех зарядов. Время в антимире течет от будущего к прошлому, а не от прошлого к будущему, как в мире.

28. ПРОБЛЕМА ВЗАИМОДЕЙСТВИЯ МЕГА– И МИКРОМИРА. БУДСТРАП-ПОДХОД

В современном естествознании все окружающие нас материальные объекты принять условно делить на микро-, макро– и мегамир. Одна из основных концепций естествознания говорит о единстве всех систем микро-, макро– и мегамира. Можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях эволюции Вселенной.

Материальные объекты микро-, макро– и мегамира отличаются не только своими геометрическими размерами, но и другими количественными характеристиками. Так, например, Солнце состоит из колоссального числа частиц: 1 056ядер атомов водорода и примерно такого же количества ядер атомов гелия.

Свойства и особенности материальных объектов микро– и мегамира описываются разными теориями, принципами, законами.

При объяснении процессов в микромире используются принципы и теории квантовой механики, квантовой статистики и т. п. Движение планет Солнечной системы описывается законом всемирного тяготения и законами Кеплера. Происхождение и эволюция Вселенной объясняются на основании комплекса естественно-научных знаний, включающих физику элементарных частиц, квантовую теорию поля, теорию относительности и т. п.

Материальные объекты образуют целостную систему лишь в том случае, если энергия связи между ними больше кинетической энергии каждого из них. Энергия связи – это та энергия, которую необходимо затратить, чтобы полностью «растащить» систему на отдельные ее составляющие. Величина энергии связи природных систем на различных уровнях организации материи зависит от вида взаимодействия и характера сил, объединяющих материальные объекты в систему. Например, существование в течение миллиардов лет звезд, в том числе и Солнца, обусловливается устойчивым равновесием между энергией взаимного гравитационного притяжения частиц, стремящегося сжать вещество звезды, и энергией их теплового движения, приводящего к его рассеиванию. Объединяющую роль в атомах и молекулах играет электромагнитное взаимодействие.

Существенное различие между материальными объектами микро– и макромира заключается в тождественности микрочастиц и индивидуальности мега-систем. Для микрочастиц выполняется принцип тождественности: состояния системы частиц, получающиеся друг из друга перестановкой частиц местами, нельзя различить ни в каком эксперименте. Такие состояния рассматриваются как одно физическое состояние. Этот квантово-механический принцип характеризует одно из основных различий между классической и квантовой механикой. В классической механике можно проследить за движением отдельных частиц по траекториям и таким образом отличить частицы одну от другой. В квантовой механике тождественные частицы полностью лишены индивидуальности. Однако в природе не существует двух совершенно одинаковых мегасистем – все они индивидуальны. Индивидуальность может проявляться и на молекулярном уровне. Например, молекулы этилового спирта и диме-тилового эфира имеют одинаковые атомный состав и мо-лекулярную массу, но различные химические и физические свойства. Такие вещества называются химическими изомерами. Нестабильные ядерные изомеры при одинаковом составе ядер имеют различные периоды полураспада.

29. ПРОБЛЕМА ПРОСТРАНСТВА И ВРЕМЕНИ

В классической механике был известен принцип относительности Галилея: если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе, движущейся прямолинейно и равномерно относительно первой. Такие системы называются инерциальными.

А. Эйнштейн использовал мысленный эксперимент, который получил название «поезд Эйнштейна»: «Представим себе наблюдателя, едущего в поезде и измеряющего скорость света, испускаемого фонарями на обочине дороги, т. е. движущегося со скоростью с в системе отсчета, относительно которой поезд движется со скоростью V. По классической теореме сложения скоростей наблюдатель, едущий в поезде, должен был бы приписать свету, распространяющемуся в направлении движения поезда, скорость с – V...». Однако скорость света выступает как универсальная постоянная природы.

Рассматривая это противоречие, А. Эйнштейн предложил отказаться от представления об неизменности свойств пространства и времени. Данный вывод противоречит здравому смыслу, так как мы не можем представить никакого пространства, кроме трехмерного, и никакого времени, кроме одномерного. Но главный критерий для науки – соответствие теории и эксперимента. Теория Эйнштейна удовлетворяла этому критерию и была принята.

Пространство и время традиционно рассматривались в науке как основные формы существования материи, ответственные за расположение отдельных элементов материи друг относительно друга и за закономерную координацию сменяющих друг друга явлений.

Характеристиками пространства считались однородность – одинаковость свойств во всех направлениях, и изотропность – независимость свойств от направления. Время также считалось однородным, т. е. любой процесс, в принципе, повторим через некоторый промежуток времени. С этими свойствами связана симметрия мира, которая имеет большое значение для его познания. Пространство рассматривалось как трехмерное, а время как одномерное и идущее в одном направлении – от прошлого к будущему. Время необратимо, но во всех физических законах от перемены знака времени на противоположный ничего не меняется, и, стало быть, физически будущее неотличимо от прошедшего.

В истории науки известны две концепции пространства: пространство неизменное как вместилище материи (взгляд И. Ньютона) и пространство, свойства которого связаны со свойствами тел, находящихся в нем (взгляд Лейбница). В соответствии с теорией относительности любое тело определяет геометрию пространства.

Из специальной теории относительности следует, что расстояние между двумя материальными точками и длительность происходящих в нем процессов являются не абсолютными, а относительными величинами. При приближении к скорости света все процессы в системе замедляются, продольные размеры тела сокращаются и события, одновременные для одного наблюдателя, оказываются разновременными для другого, движущегося относительно него.

Итак, пространство и время – общие формы координации материальных явлений, а не самостоятельно существующие независимо от материи начала бытия.

Найденное А. Эйнштейном объединение принципа относительности Галилея с относительностью одновременности получило название принципа относительности Эйнштейна.

http://lib.rus.ec/




БАНКОВСКОЕ ДЕЛО
БУХГАЛТЕРСКИЙ, УПР. И ФИН. УЧЕТ
БЮДЖЕТ И БЮДЖЕТНАЯ СИСТЕМА РФ
ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ
ГУМАНИТАРНЫЕ НАУКИ
ДОКУМЕНТОВЕДЕНИЕ И ДЕЛОПРОИЗВОДСТВО
ИНВЕСТИЦИИ
ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЭКОНОМИКЕ
ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ
МАРКЕТИНГ
МЕНЕДЖМЕНТ
МЕТ. РЕКОМЕНДАЦИИ, ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
МИРОВАЯ ЭКОНОМИКА И МЭО
НАЛОГИ И НАЛОГООБЛОЖЕНИЕ
ПЛАНИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ
ПРАВОВЕДЕНИЕ
РАЗРАБОТКА УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
РЫНОК ЦЕННЫХ БУМАГ
СТАТИСТИКА
УПРАВЛЕНИЕ ПЕРСОНАЛОМ
УЧЕБНИКИ, ЛЕКЦИИ, ШПАРГАЛКИ (СКАЧАТЬ)
ФИНАНСОВЫЙ МЕНЕДЖМЕНТ
ФИНАНСЫ, ДЕНЕЖНОЕ ОБРАЩЕНИЕ И КРЕДИТ
ЦЕНЫ И ЦЕНООБРАЗОВАНИЕ
ЭКОНОМИКА
ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ
ЭКОНОМИКА И СОЦИОЛОГИЯ ТРУДА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ (МИКРО-, МАКРО)
ЭКОНОМИЧЕСКИЙ АНАЛИЗ
ЭКОНОМЕТРИКА
Оформить заказ
Ваше имя *
Ваш e-mail *
Контактный телефон
Город *
Учебное заведение *
Предмет *
Тип работы *
Тема работы/вариант *
Кол-во страниц
Срок выполнения *
Прикрепить файл
Дополнительные условия


Статистика
Онлайн всего: 32
Гостей: 32
Пользователей: 0