Контрольные, курсовые, рефераты, тесты – готовые и на заказ!
 Гарантия качества, доступные цены, индивидуальный подход
 Работы выполняют высококвалифицированные специалисты
Войти      Регистрация
 тел. 8-912-388-82-05
  std72@mail.ru
> 20 лет успешной работы
> 50000 выполненных заказов
Отзывы/вопросы

Форма входа



Главная » Учебно-методические материалы » ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ » Высшая математика: лекционный курс

ТЕМА 3. Системы линейных уравнений
22.12.2011, 13:09

Пусть дана система n линейных уравнений с n неизвестными
                                     (1)

1. Правило Крамера

     Пусть составленный из коэффициентов при неизвестных  определитель:
     .
     Тогда система (1) имеет единственное решение
     ,
     где определитель Δk  (k=1,2,…n) получен из определителя Δ путем замены k-го столбца столбцом свободных членов системы (1).
     Пример. Решить систему линейных уравнений по правилу Крамера:
     
     Решение. Вычислим определители Δ, Δ1 , Δ2 , Δ3.
     
     
     
     
     
     Тогда .
     Ответ: х1=1, х2=0, х3= -1.

2. Метод Гаусса

     Пусть дана система уравнений (1).
     Предположим, что среди коэффициентов при неизвестном х1 имеются коэффициенты, отличные от нуля. Пусть одним из таких коэффициентов является а11. Разделим первое уравнение системы (1) на а11, получим:
                                              (2) 
     Это уравнение умножим на (–а21) и сложим его со вторым уравнением системы (1), затем уравнение (2) умножим на (-а31) и сложим его с третьим уравнением и т.д. С помощью таких операций исключим неизвестное х1 из всех уравнений системы, начиная со второго. Оставляем неизменным первое уравнение системы (1), а к оставшимся применяем тот же прием, т.е. в n-2 уравнениях исключаем неизвестное х2 и т.д.
     Систему уравнений (1) приведем к треугольному виду:
                                              (3) 
     Пусть . Из последнего уравнения системы (3) найдем хn. Подставляя затем это значение в предыдущее уравнение, найдем х n -1 и т.д. Продолжая эту процедуру, дойдем до первого уравнения, из которого путем подстановки уже найденных значений х2х3, …, х n получим неизвестное х1.
     Пример . Решить систему уравнений методом Гаусса:
                                                              (4) 
     Решение. Заметим, что во втором уравнении системы коэффициент при х1 равен 1. Поменяв местами первое и второе уравнения, получим систему:
                                                                 (5) 
     Умножим первое уравнение системы (5) на (–2) и сложим его со вторым уравнением. Затем умножим первое уравнение на (–3) и сложим его с третьим уравнением. Получим следующую систему уравнений: 
                                                            (6) 
     Разделим второе уравнение системы (6) на (-5), затем полученное уравнение умножим на 9 и сложим с третьим уравнением системы (6). В результате придем к системе (7)
                                                         (7) 
     Из третьего уравнения находим х3=-1. Подставим это значение во второе уравнение системы (7) и найдем х2
     
     Подставляя полученные значения х2 = 0 и х3 = -1 в первое уравнение системы (7), найдем х1
    х1 + 2*0-1*(-1)=2, или х1 = 1.
     Ответ: х1 = 1, х2= 0, х3 = -1.

3. Решение системы линейных уравнений с использованием обратной матрицы.

     Введем для системы линейных уравнений (1) следующие матрицы:
     .
     Систему (1) представим в матричной форме А* Х = В, которая эквивалентна исходной. Действительно, если перемножить матрицы А и Х и приравнять элементы матрицы-произведения к соответствующим элементам матрицы В, то получим систему уравнений (1).
     Умножим обе части уравнения А*Х = В слева на матрицу А-1, получим А-1 * (А Х) = А-1 В или (А-1 АХА-1 В.
     Так как А-1 * А = Е, то Е = А-1 * В или Х = А-1* В.
     Эта формула дает решение системы в матричной форме.
     Пример. Решить систему
           используя обратную матрицу.
     Решение. Найдем обратную матрицу к матрице системы .
     Определитель матрицы А:                 
     .
     Так как определитель матрицы А отличен от 0, то обратная матрица существует. Найдем ее по формуле , вычислив предварительно алгебраические дополнения. Получим:
     .
     Найдем матричное решение системы:
     .
     Ответ: х1 = 1; х2 = 1; х3 = 1.

http://math.immf.ru/




БАНКОВСКОЕ ДЕЛО
БУХГАЛТЕРСКИЙ, УПР. И ФИН. УЧЕТ
БЮДЖЕТ И БЮДЖЕТНАЯ СИСТЕМА РФ
ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ
ГУМАНИТАРНЫЕ НАУКИ
ДОКУМЕНТОВЕДЕНИЕ И ДЕЛОПРОИЗВОДСТВО
ИНВЕСТИЦИИ
ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЭКОНОМИКЕ
ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ
МАРКЕТИНГ
МЕНЕДЖМЕНТ
МЕТ. РЕКОМЕНДАЦИИ, ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
МИРОВАЯ ЭКОНОМИКА И МЭО
НАЛОГИ И НАЛОГООБЛОЖЕНИЕ
ПЛАНИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ
ПРАВОВЕДЕНИЕ
РАЗРАБОТКА УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
РЫНОК ЦЕННЫХ БУМАГ
СТАТИСТИКА
УПРАВЛЕНИЕ ПЕРСОНАЛОМ
УЧЕБНИКИ, ЛЕКЦИИ, ШПАРГАЛКИ (СКАЧАТЬ)
ФИНАНСОВЫЙ МЕНЕДЖМЕНТ
ФИНАНСЫ, ДЕНЕЖНОЕ ОБРАЩЕНИЕ И КРЕДИТ
ЦЕНЫ И ЦЕНООБРАЗОВАНИЕ
ЭКОНОМИКА
ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ
ЭКОНОМИКА И СОЦИОЛОГИЯ ТРУДА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ (МИКРО-, МАКРО)
ЭКОНОМИЧЕСКИЙ АНАЛИЗ
ЭКОНОМЕТРИКА
Оформить заказ
Ваше имя *
Ваш e-mail *
Контактный телефон
Город *
Учебное заведение *
Предмет *
Тип работы *
Тема работы/вариант *
Кол-во страниц
Срок выполнения *
Прикрепить файл
Дополнительные условия


Статистика
Онлайн всего: 37
Гостей: 37
Пользователей: 0