Контрольные, курсовые, рефераты, тесты – готовые и на заказ!
 Гарантия качества, доступные цены, индивидуальный подход
 Работы выполняют высококвалифицированные специалисты
Войти      Регистрация
 тел. 8-912-388-82-05
  std72@mail.ru
> 20 лет успешной работы
> 50000 выполненных заказов
Отзывы/вопросы

Форма входа



Главная » Учебно-методические материалы » ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ » Теория систем и системный анализ: учебный курс

Тема 9. Методы выбора решений
18.01.2012, 19:54

Модели и методы исследования операций
В условиях определенности задачи принятия решений, как правило, хорошо формализуются и описываются в терминах количественных переменных, и для их решения используются оптимизационные модели и аппарат математического программирования. Независимо от того, какой метод решения задачи используется, всегда отыскивается оптимальное или близкое к нему решение, максимизирующее критерий качества на модели (целевую функцию) при заданных условиях и ограничениях.

Наиболее хорошо разработаны модели и алгоритмы решения на этих моделях для следующих классов задач исследования операций [4, 13, 17]:

  • распределения,
  • управления запасами,
  • массового обслуживания,
  • упорядочения и координации,
  • выбора маршрута;
  • принятия решений в условиях противодействия.

Распределительные задачи связаны с распределением ресурсов по работам, при котором минимизируются общие затраты (либо максимизируется общий доход). Они могут решаться методами линейного и динамического программирования. Яркими представителями распределительных задач являются задачи транспортные, о назначениях, использования ресурсов.

Задача управления запасами заключается в минимизации убытков, связанных с пополнением и хранением запасов и издержками из-за неудовлетворенного спроса. В результате решения получают ответ относительно размеров заказываемой партии, величины уровня запасов, точек размещения заказов и др.

Цель теории массового обслуживания – анализ процесса образования очередей "клиентами” при обслуживании, взаимосвязей между их основными характеристиками и выявление наилучших путей управления ими. В системах массового обслуживания присутствуют издержки, связанные с потерей клиентов из-за большой очереди или простоем оборудования. Задача сводится к минимизации всех видов издержек.

Содержанием задач упорядочения и координации является выбор дисциплины очереди. В качестве критерия оптимальности может быть время обслуживания, издержки по переналадке механизмов и др. Наиболее актуальными задачами являются задачи сетевого планирования и теории расписаний. В задачах сетевого планирования оптимизируются сроки выполнения всего комплекса операций (работ), представленного в виде сетевого графика, либо при заданных сроках минимизируются ресурсы на выполнение этих операций. В задачах теории расписаний формируется очередность операций, выполняемых одной машиной (задача директора), либо составляется расписание выполнения последовательности действий нескольким машинам. При решении задач сетевого планирования и теории расписаний широко применяется теория графов и комбинаторный анализ.

К задачам упорядочения тесно примыкают задачи выбора маршрута. На сети ищется маршрут доставки грузов нескольким потребителям либо в адрес одного, который минимизирует затраты на доставку. К данной группе задач выбора в качестве типичного представителя относят задачу коммивояжера.

В случае, если во внешней среде участвуют силы, активно противодействующие лицу, которое принимает решение, т.е. имеют место конфликтные ситуации, для принятия решений в условиях противодействия применяют методы теории игр.

Методы экспертных оценок
При исследовании сложных систем возникают проблемы, выходящие за пределы формальных математических постановок задач. В таком случае прибегают к услугам экспертов, т.е. лиц, чьи суждения и интуиция могут уменьшить сложность проблемы. Обсудим вопросы привлечения экспертов к решению конкретной и частной задачи системного анализа – задачи выбора. Правда, в этой частной задаче имеются и некоторые общие черты экспертных методов, например подходы к оценке компетентности экспертов, к интерпретации даваемых ими результатов и пр.

Основная идея экспертных методов состоит в том, чтобы использовать интеллект людей, их способность искать и находить решение слабо формализованных задач. Однако особенность интеллектуальной деятельности людей состоит в том, что она во многом зависит от внешних и внутренних условий. Поэтому в методиках организации экспертных оценок специальное внимание уделяется созданию благоприятных условий и нейтрализации факторов, неблагоприятно влияющих на работу экспертов [3].

Простейший вариант состоит в следующем. Если эксперты предлагают различающиеся упорядочения альтернатив, то возникает вопрос о том, как использовать мнения всех экспертов для окончательного упорядочения? Это далеко не тривиальная задача. Фактически мы возвращаемся к проблеме коллективного выбора со всеми его особенностями, в том числе – с возможностями парадоксов [3].

Предположим, например, что эксперты оценивают альтернативы в числовых шкалах. Пусть qj(xi) – оценка i-й альтернативы j-м экспертом (). Оценки q1(xi), ...,qn(xi) можно рассматривать как "измерения” искомой "истинной характеристики” q(xi), считая отклонения qj(xi) – q(xi) случайными величинами. В качестве приближения можно использовать некоторую статистику: q'(xi)=q'(q1(xi),..., qn(xi)); обычно это выборочное среднее

.

Сложнее обстоит дело, когда альтернативы нельзя оценить сразу одним числом и экспертам предлагается дать оценки отдельно по каждому показателю. Например, оценка качества промышленного изделия складывается из оценок признаков социальных (уровень потребности), функциональных (степень соответствия назначения), экономических, эстетических, эргономических и др. В этом случае имеем набор чисел qjk(xi), где k – номер признака. Кроме этих чисел экспертов просят оценить степень важности l jk каждого показателя (если это не выполнено другим способом). Тогда Image2.gif (1304 bytes).

Следующее уточнение вводят в случае неоднородности группы экспертов. Естественно придать различные (а не одинаковые, равные 1/n) веса мнениям экспертов, имеющих разную квалификацию. Определение коэффициента aj компетентности j-го эксперта можно поручить самим экспертам. Пусть каждый из них (l-й) оценивает компетентность других числами Image3.gif (971 bytes) (при этом и свою – числом all). Усреднение дает Image4.gif (1161 bytes). В результате получают итоговую оценку

Image5.gif (1311 bytes).

В тех случаях, когда эксперты лишь упорядочивают альтернативы, т.е. используют только порядковую шкалу, возможность арифметических операций отпадает. Существуют специальные методы обработки экспертной информации, измеренной в нечисловых шкалах (назывных, шкалах порядка).

Модели многокритериального выбора
Постановка задачи многокритериального выбора [3]. Будем предполагать, что множество X = {x1, x2, … xm} альтернативных решений сформировано тем или иным методом генерации альтернатив (методами мозгового штурма, морфологического анализа, сценариев, деловых игр и др.). Необходимо выбрать одну (или несколько) наиболее предпочтительных альтернатив. Для выбора наилучшего альтернативного решения из исходного множества X необходимо сформировать критерий выбора. Большинство методов выбора предполагают, что каждую альтернативу возможно оценить по критерию определенным числом (значением критерия). Наилучшей считается альтернатива, имеющая наилучшее значение критерия. Для большинства задач выбора невозможно использовать какой-либо один критерий. В этом случае используют несколько критериев FiImage6.gif (929 bytes) , описывающих одно решение с разных сторон и дополняющих друг друга. Такие критерии будем называть частными.

Рассмотрим пример. При выборе конструкции самолета проектировщикам следует учитывать множество критериев: технических (высотность, скорость, маневренность, грузоподъемность и т.д.), технологических (связанных с будущим процессом серийного производства), экономических (затраты на производство, обслуживание и т.д.), эргономических и пр.

Выбор по одному критерию сводится к отысканию альтернативы с наилучшим значением этого критерия. Многокритериальные задачи не имеют однозначного общего решения. Теоретически можно представить себе случай, когда имеется одна альтернатива, обладающая наилучшими оценками по всем критериям; она и является наилучшей. Однако на практике такие случаи встречаются редко. Часто по одному критерию наилучшей является одна альтернатива, по другому – другая.

Наиболее употребительным способом решения многокритериальной задачи является сведение ее к однокритериальной. Это означает введение интегрального критерия (суперкритерия) F, зависящего от частных критериев FiImage6.gif (929 bytes):

F = F (F1, F2, … Fn).

Оценка альтернативы по интегральному критерию, таким образом, зависит от ее оценок по каждому частному критерию, т.е. интегральная оценка каждой альтернативы есть некоторая функция от оценок по частным критериям.

При определении интегральной оценки, кроме того, необходимо учитывать вклад каждого частного критерия в интегральный критерий. Дело в том, что частные критерии могут иметь разный вес (важность, ценность). Например, при проектировании гражданского самолета такой критерий, как надежность является более важным, чем маневренность.

Будем рассматривать формирование интегрального критерия для частного случая. Предположим, что каждую альтернативу xj возможно оценить по критерию Fi числом в интервале от 0 до 1. Как правило, оценки выставляются экспертом или лицом, принимающим решения (ЛПР).

Важность частных критериев Fi будем оценивать коэффициентами важности (весовыми коэффициентами) wi, отражающими относительный вклад критериев в суперкритерий. Множество весовых коэффициентов частных критериев W = {w1, w2,… wn}, как правило, определяется экспертом (ЛПР) и отражает его личные предпочтения.

В дальнейшем будем предполагать, что весовые коэффициенты задаются положительным числом и сумма всех коэффициентов должна быть равна некоторой константе a, равной, например, 1 (10, 100, 1000):

Image7.gif (1030 bytes)

Ниже рассмотрены наиболее часто используемые виды интегральных критериев.

1) Максимум суммы взвешенных оценок

Image8.gif (1217 bytes). (1)

Наилучшей является альтернатива с максимальной суммой взвешенных оценок по всем частным критериям. Это наиболее распространенный критерий.

При максимальной оценке варианта по некоторому критерию, равной единице, его взвешенная оценка будет равна его весу. Таким образом, множество весов всех частных критериев характеризует идеальный возможный вариант.

Достоинство данного критерия заключается в его простоте и наглядном физическом смысле. Недостатком является следующее: можно получить относительно высокое значение интегрального критерия за счет больших значений отдельных частных критериев и малых значений других частных критериев.

2) Минимум суммы отклонений от "идеальной точки”

Image9.gif (1256 bytes)      (2)

Наилучшей является альтернатива с минимальным отклонением взвешенных оценок от максимальных значений частных критериев Image10.gif (900 bytes), т.е. наиболее приближенная к идеалу по всем критериям (к "идеальной точке”). В нашем случае "идеальной точкой” будет альтернатива со следующими значениями частных критериев:

F= F= … = Fn = 1.

Очевидно, что оптимальное решение, найденное по критерию (2) совпадает с оптимальным решением, найденным по критерию (1).

3) Минимум суммы квадратов отклонений от "идеальной точки”

Image11.gif (1474 bytes)     (3)

Этот интегральный критерий является более чувствительным к отклонениям. Критерий (3) позволяет "отсеять” альтернативы со значительными отклонениями значений частных критериев от их максимальных значений, т.к. такие отклонения, возведенные в квадрат, резко ухудшают значение интегрального критерия.

В отличие от предыдущих видов интегрального критерия здесь альтернатива должна "равномерно” приближаться к идеалу.

4) Минимум максимального отклонения

Image12.gif (1468 bytes)    (4)

Этот критерий позволяет "отбраковывать” альтернативы с большими отклонениями по отдельным критериям.

5) Максимум минимальной оценки

Image13.gif (1277 bytes)   (5)

Для каждой альтернативы сначала находится минимальная взвешенная оценка по всем критериям. Наилучшей альтернативой является та, которая имеет максимальную оценку из минимальных оценок критериев. Этот критерий используется при выборе, когда нежелательны малые значения по частным критериям.

Рассмотрим пример выбора альтернативного варианта организационной структуры по интегральным критериям различных видов.

Множество X включает следующие альтернативы:

x1 – простая структура,

x2 - функционально-ориентированная структура,

x3 - структура на основе автономных центров (дивизиональная),

x4 - матричная структура.

Оценка каждого решения ведется по 9-ти частным критериям Image14.gif (983 bytes), приведенным в таблице 3.4. Коэффициенты wi, отражающие "вес” частных критериев, также приведены в таблице 3.4. Их сумма равна 100.

Таблица 3.4

Выбор варианта организационной структуры

Критерии

wi

x1

x2

x3

x4

F1 - Возможность компетентного управления

10

н

у

х

х

F2 - Оперативность управления

5

н

н

ох

у

F3 - Контролируемость работы подразделений

5

н

х

х

о

F4 - Координируемость решений

15

х

у

у

п

F5 - Адаптивность оргструктуры к изменению рынка

20

о

ох

о

х

F6 - Затраты на административный аппарат

5

у

у

х

п

F7 - Возможность технологического развития

10

о

х

о

ох

F8 - Мотивация работы сотрудников

15

н

п

х

ох

F9 - Ответственность подразделений за издержки и доходы

15

н

у

о

о

Значения интегрального критерия (1)

41,9

50,6

78,0

65,0

Значения интегрального критерия (2)

58,1

49,4

22,0

35,0

Значения интегрального критерия (3)

53,3

27,9

8,9

18,1

Значения интегрального критерия (4)

15,0

11,2

7,5

11,2

Значения интегрального критерия (5)

0,0

0,0

3,1

1,1

Вариантам экспертами выставляются качественные оценки от "неудовлетворительно" до "отлично". Экспертным оценкам сопоставляются числовые оценки по следующей схеме:

  • отлично (о) = 1,0;
  • очень хорошо (ох) = 0,75;
  • хорошо (х) = 0,625;
  • удовлетворительно (у) = 0,5;
  • посредственно (п) = 0,25;
  • неудовлетворительно (н) = 0.

В таблице 3.4 приведены значения интегральных критериев для альтернатив. Из таблицы видно, что по всем интегральным критериям оптимальным является вариант x3 - оргструктура на основе автономных центров. Естественно, что при решении других задач оптимальные варианты по разным интегральным критериям могут быть различными.





БАНКОВСКОЕ ДЕЛО
БУХГАЛТЕРСКИЙ, УПР. И ФИН. УЧЕТ
БЮДЖЕТ И БЮДЖЕТНАЯ СИСТЕМА РФ
ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ
ГУМАНИТАРНЫЕ НАУКИ
ДОКУМЕНТОВЕДЕНИЕ И ДЕЛОПРОИЗВОДСТВО
ИНВЕСТИЦИИ
ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЭКОНОМИКЕ
ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ
МАРКЕТИНГ
МЕНЕДЖМЕНТ
МЕТ. РЕКОМЕНДАЦИИ, ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
МИРОВАЯ ЭКОНОМИКА И МЭО
НАЛОГИ И НАЛОГООБЛОЖЕНИЕ
ПЛАНИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ
ПРАВОВЕДЕНИЕ
РАЗРАБОТКА УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
РЫНОК ЦЕННЫХ БУМАГ
СТАТИСТИКА
УПРАВЛЕНИЕ ПЕРСОНАЛОМ
УЧЕБНИКИ, ЛЕКЦИИ, ШПАРГАЛКИ (СКАЧАТЬ)
ФИНАНСОВЫЙ МЕНЕДЖМЕНТ
ФИНАНСЫ, ДЕНЕЖНОЕ ОБРАЩЕНИЕ И КРЕДИТ
ЦЕНЫ И ЦЕНООБРАЗОВАНИЕ
ЭКОНОМИКА
ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ
ЭКОНОМИКА И СОЦИОЛОГИЯ ТРУДА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ (МИКРО-, МАКРО)
ЭКОНОМИЧЕСКИЙ АНАЛИЗ
ЭКОНОМЕТРИКА
Оформить заказ
Ваше имя *
Ваш e-mail *
Контактный телефон
Город *
Учебное заведение *
Предмет *
Тип работы *
Тема работы/вариант *
Кол-во страниц
Срок выполнения *
Прикрепить файл
Дополнительные условия


Статистика
Онлайн всего: 18
Гостей: 18
Пользователей: 0