Контрольные, курсовые, рефераты, тесты – готовые и на заказ!
 Гарантия качества, доступные цены, индивидуальный подход
 Работы выполняют высококвалифицированные специалисты
Войти      Регистрация
 тел. 8-912-388-82-05
  std72@mail.ru
> 20 лет успешной работы
> 50000 выполненных заказов
Отзывы/вопросы

Форма входа



Главная » Учебно-методические материалы » СТАТИСТИКА » Общая теория статистики

Ряды динамики (2)
15.12.2011, 11:29

Ряд средних величин

Сначала преобразуем приведенный выше моментный ряд динамики с равными интервалами времени в ряд средних величин. Для этого вычислим среднюю списочную численность работников предприятия за каждый месяц, как среднюю из показателей на начало и конец месяца(): за январь (150+145):2=147,5; за февраль (145+162):2 = 153,5; за март (162+166):2 = 164.

Представим это в табличной форме.

Месяцы

Среднесписочная численность работников

Январь

147,5

Февраль

153,5

Март

164,0

Средний уровень в производных рядах средних величин рассчитывается по формуле средней арифметичекой простой:

Заметим, что средняя списочная численность работников предприятия за 1 квартал, вычисленная по формуле средней хронологической на базе данных на 1 число каждого месяца и по средней арифметической — по данным производного ряда — равны между собой, т.е. 155 человек. Сравнение расчетов позволяет понять, почему в формуле средней хронологической начальный и конечный уровни ряда берутся в половинном размере, а все промежуточные уровни берутся в полном размере.

Ряды средних величин, производные от моментных или интервальных рядов динамики, не следует смешивать с рядами динамики, в которых уровни выражены средней величиной. Например, средняя урожайность пшеницы по годам, средняя заработная плата и т.д.

Ряды относительных величин

В экономической практике очень широко используют ряды относительных величин. Практически любой первоначальный ряд динамики можно преобразовать в ряд относительных величин. По сути преобразование означает замену абсолютных показателей ряда относительными величинами динамики.

Средний уровень ряда в относительных рядах динамики называется среднегодовым темпом роста. Методы его расчета и анализа рассмотрены ниже.

http://www.grandars.ru




БАНКОВСКОЕ ДЕЛО
БУХГАЛТЕРСКИЙ, УПР. И ФИН. УЧЕТ
БЮДЖЕТ И БЮДЖЕТНАЯ СИСТЕМА РФ
ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ
ГУМАНИТАРНЫЕ НАУКИ
ДОКУМЕНТОВЕДЕНИЕ И ДЕЛОПРОИЗВОДСТВО
ИНВЕСТИЦИИ
ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЭКОНОМИКЕ
ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ
МАРКЕТИНГ
МЕНЕДЖМЕНТ
МЕТ. РЕКОМЕНДАЦИИ, ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
МИРОВАЯ ЭКОНОМИКА И МЭО
НАЛОГИ И НАЛОГООБЛОЖЕНИЕ
ПЛАНИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ
ПРАВОВЕДЕНИЕ
РАЗРАБОТКА УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
РЫНОК ЦЕННЫХ БУМАГ
СТАТИСТИКА
УПРАВЛЕНИЕ ПЕРСОНАЛОМ
УЧЕБНИКИ, ЛЕКЦИИ, ШПАРГАЛКИ (СКАЧАТЬ)
ФИНАНСОВЫЙ МЕНЕДЖМЕНТ
ФИНАНСЫ, ДЕНЕЖНОЕ ОБРАЩЕНИЕ И КРЕДИТ
ЦЕНЫ И ЦЕНООБРАЗОВАНИЕ
ЭКОНОМИКА
ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ
ЭКОНОМИКА И СОЦИОЛОГИЯ ТРУДА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ (МИКРО-, МАКРО)
ЭКОНОМИЧЕСКИЙ АНАЛИЗ
ЭКОНОМЕТРИКА
Оформить заказ
Ваше имя *
Ваш e-mail *
Контактный телефон
Город *
Учебное заведение *
Предмет *
Тип работы *
Тема работы/вариант *
Кол-во страниц
Срок выполнения *
Прикрепить файл
Дополнительные условия


Статистика
Онлайн всего: 32
Гостей: 32
Пользователей: 0