Главная » Учебно-методические материалы » ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ » Математические методы. Попова Н.В.

Тема 1.4. Разновидности задач моделирования и подходов к их решению
22.12.2011, 14:08

Задачи моделирования делятся на две категории: прямые и обратные.

Прямые задачи отвечают на вопрос, что будет, если при заданных условиях мы выберем какое-то решение из множества допустимых решений. В частности, чему будет равен, при выбранном решении критерий эффективности.

Обратные задачи отвечают на вопрос: как выбрать решение из множества допустимых решений, чтобы критерий эффективности обращался в максимум или минимум.

Остановимся на обратных задачах. Если число допустимых вариантов решения невелико, то можно вычислить критерий эффектности для каждого из них, сравнить между собой полученные значения и непосредственно указать один или несколько оптимальных вариантов. Такой способ нахождения оптимального решения называется "простым перебором". Однако. Когда число допустимых вариантов решения велико, то поиск оптимального решения простым перебором затруднителен, а зачастую практически невозможен. В этих случаях применяются методы "направленного" перебора, обладающие той особенностью, что оптимальное решение находится рядом последовательных попыток или приближений, из которых каждое последующие приближает нас к искомому оптимальному.

Модели принятия оптимальных решений отличаются универсальностью. Их можно классифицировать как задачи минимизации (максимизации) критерия эффективности, компоненты которого удовлетворяют системе ограничений (равенств и/или) неравенств.

Их можно разделить на:

принятие решений в условиях определенности - исходные данные - детерминированные; принятие решений в условиях неопределенности - исходные данные - случайные величины.

Классификация задач оптимизации

Исходные данныеПеременныеЗависимостиЗадача
ДетерминированныеНепрерывныеЛинейныеЛинейного программирования
ЦелочисленныеЛинейныеЦелочисленного программирования
Непрерывные, целочисленныеНелинейныеНелинейного программирования
СлучайныеНепрерывныеЛинейныеСтохастическое программирование

А по критерию эффективности:

одноцелевое принятие решений (один критерий эффективности);

многоцелевое принятие решений (несколько критериев эффективности).

Наиболее разработан и широко используется на практике аппарат одноцелевого принятия решений в условиях определенности, который получил название математического программирования. В этом "детерминированном" случаи, когда все условия операции известны заранее. тогда, обратная задача будет включает в себя критерий эффективности и некоторые известные заранее факторы (ограничения) позволяющие выбрать множество допустимых решений.

В общем виде обратная детерминированная задача будет выглядеть следующим образом.

При заданном комплексе ограничений найти такое оптимальное решение, принадлежащее множеству допустимых решений, которое обращает критерий эффективности в максимум (минимум).

Метод поиска экстремума и связанного с ним оптимального решения должен всегда исходить из особенности критерия эффективности и вида ограничений, налагаемых на решение.

Очень часто реальные задачи содержит помимо выше перечисленных факторов, еще одну группу - неизвестные факторы. Тогда обратную задачу можно сформулировать следующим образом.

При заданном комплексе ограничений, с учетом неизвестных факторов, найти такое оптимальное решение, принадлежащее множеству допустимых решений, которое, по возможности, обеспечивает максимальное (минимальное) значение критерий эффективности.

Это уже другая, не чисто математическая задача (недаром в ее формулировке сделана оговорка "по возможности"). Наличие неопределенных факторов переводит эту задачу в новое качество: она превращается в задачу о выборе решений в условиях неопределенности.

Приведем примеры.

Пример 1.4.1

Пример 1.4.2

Для того, чтобы принимать решение в условиях неопределенности, необходимо знать каков вид этой неопределенности. По этому признаку можно различать стохастическую (вероятностную) неопределенность, когда неизвестные факторы статистически устойчивы и поэтому представляют собой обычные объекты теории вероятностей - случайные величины (или случайные функции, события и т.д.). При этом должны быть известны или определены при постановке задачи все необходимые статистические характеристики (законы распределения и их параметры).

Пример 1.4.3

Пример 1.4.4

В стохастических задачах неизвестные факторы представляют собой случайные величины с какими-то в принципе известными, вероятностными характеристиками - законами распределения, математическими ожиданиями, дисперсиями. Тогда критерий эффективности, зависящий от этих факторов, тоже будет величиной случайной. Максимизировать или минимизировать случайную величину невозможно: при любом решении она остается случайной, неконтролируемой.

Возникает вопрос, нельзя ли заменить случайные факторы их средними значениями (математическими ожиданиями). Тогда задача становится детерминированной и может быть решена обычными методами. Понятно, что решение этого вопроса зависит от того, насколько случайны эти факторы, как мало они откланяются от своих математических ожиданий.

Приведем примеры. Например, если мы составляем план снабжения группы предприятий сырьем, то можно в первом приближении пренебречь, скажем, случайностью фактической производительности источников сырья (если их производство хорошо налажено). Но, если, например, планируется работа ремонтной мастерской, обслуживающей автобазу, то пренебречь случайностью момента появления неисправностей и случайностью времени выполнения ремонта невозможно.

В случаях, когда критерий эффективности остается случайной величиной, можно в качестве критерия эффективности взять его среднее значение (математическое ожидание) и выбрать такое решение, при котором этот усредненный показатель обращается в максимум (минимум). Очень часто именно так и поступают, выбирая в качестве критерия эффективности в задачах, содержащих определенность, не просто доход, а средний доход, не просто время, а среднее время.

Применение "оптимизации в среднем" дает хорошие результаты, когда речь идет ряде длинных однородных операций, тогда "минусы" в одном случае покрываются "плюсами" в другом. Но возможны случаи, когда такая оптимизация не дает нужного эффекта.

Пример 1.4.5

Прежде всего нужно выбрать показатель эффективности F. Разумеется, желательно, чтобы время ожидания врача было минимальным. Но время величина случайная и если применить "оптимизацию в среднем", то надо выбрать тот алгоритм, при котором время ожидания минимально.

Но дело в том, что время ожидания врача отдельными больными не суммируется: слишком долгое ожидание одного из них не компенсируется почти мгновенным обслуживанием другого. Чтобы избежать таких неприятностей, можно дополнить показатель эффективности добавочными требованиями, чтобы фактическое время ожидания врача было не больше какого предельного значения f0. Поскольку время ожидания величина случайная, нельзя просто потребовать, чтобы выполнялось условие F f0, но можно потребовать, чтобы это условие выполнялось с большой вероятностью, настолько большой, чтобы событие F f0 было практически достоверным. Пусть k=0,995 и потребуем, чтобы вероятность P(F≤ f) ≥ k.

Введение такого ограничения означает, что из области допустимых решений, исключаются решения эму не удовлетворяющие. Ограничения такого типа называются стохастическим ограничениями.

Особенно осторожными надо быть с "оптимизацией в среднем", когда речь идет об единичной операции.

Кроме рассмотренных выше, бывают задачи, когда неизвестные факторы не могут быть изучены и описаны статистическими методами. Это бывает в двух случаях:

  • распределение вероятностей для параметров в принципе существует, но к моменту принятия решения не может быть получено;
  • распределение вероятностей для параметров вообще не существует.

Пример 1.4.6

Теперь рассмотрим случай, когда вообще не существует вероятностных характеристик, случай нестохастической неопределенности.

Пример 1.4.7

В настоящее время полноценной научной теории компромисса не существует, хотя некоторые попытки в этом направлении в теории игр и статистических решений делаются.

http://matmetod-popova.narod.ru/




БАНКОВСКОЕ ДЕЛО
БУХГАЛТЕРСКИЙ УЧЕТ
БЮДЖЕТ И БЮДЖЕТНАЯ СИСТЕМА РФ
ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ
ГУМАНИТАРНЫЕ НАУКИ
ДОКУМЕНТОВЕДЕНИЕ И ДЕЛОПРОИЗВОДСТВО
ДРУГИЕ ЭКОНОМИЧЕСКИЕ ДИСЦИПЛИНЫ
ЕСТЕСТВЕННЫЕ ДИСЦИПЛИНЫ
ИНВЕСТИЦИИ
ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ
МАРКЕТИНГ
МЕНЕДЖМЕНТ
МЕТ. РЕКОМЕНДАЦИИ, ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
МИРОВАЯ ЭКОНОМИКА И МЭО
НАЛОГИ И НАЛОГООБЛОЖЕНИЕ
ПЛАНИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ
РАЗРАБОТКА УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
РЫНОК ЦЕННЫХ БУМАГ
СТАТИСТИКА
ТЕХНИЧЕСКИЕ ДИСЦИПЛИНЫ
УПРАВЛЕНИЕ ПЕРСОНАЛОМ
УЧЕБНИКИ, ЛЕКЦИИ, ШПАРГАЛКИ (СКАЧАТЬ)
ФИНАНСОВЫЙ МЕНЕДЖМЕНТ
ФИНАНСЫ, ДЕНЕЖНОЕ ОБРАЩЕНИЕ И КРЕДИТ
ЦЕНЫ И ЦЕНООБРАЗОВАНИЕ
ЭКОНОМИКА
ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ
ЭКОНОМИКА И СОЦИОЛОГИЯ ТРУДА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ (МИКРО-, МАКРО)
ЭКОНОМИЧЕСКИЙ АНАЛИЗ
ЭКОНОМЕТРИКА
ЮРИСПРУДЕНЦИЯ